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Abstract

The exponential growth of large-scale molecular sequence data and of the PubMed scientific literature has prompted active research
in biological literature mining and information extraction to facilitate genome/proteome annotation and improve the quality of biological
databases. Motivated by the promise of text mining methodologies, but at the same time, the lack of adequate curated data for training and
benchmarking, the Protein Information Resource (PIR) has developed a resource for protein literature mining—iProLINK (integrated Protein
Literature INformation and Knowledge). As PIR focuses its effort on the curation of the UniProt protein sequence database, the goal of
iProLINK is to provide curated data sources that can be utilized for text mining research in the areas of bibliography mapping, annotation
extraction, protein named entity recognition, and protein ontology development. The data sources for bibliography mapping and annotation
extraction include mapped citations (PubMed ID to protein entry and feature line mapping) and annotation-tagged literature corpora. The
latter includes several hundred abstracts and full-text articles tagged with experimentally validated post-translational modifications (PTMs)
annotated in the PIR protein sequence database. The data sources for entity recognition and ontology development include a protein name
dictionary, word token dictionaries, protein name-tagged literature corpora along with tagging guidelines, as well as a protein ontology based
on PIRSF protein family names. iProLINK is freely accessiblettt://pir.georgetown.edu/iprolinkvith hypertext links for all downloadable
files.
© 2004 Elsevier Ltd. All rights reserved.

Keywords: PubMed; UniProt; Literature mining; Natural language processing; Post-translation modifications; Protein annotation

1. Introduction and manually-curated annotation is rather limited due to the
laborious nature of knowledge extraction from the literature.
Increasingly researchers have studied complex biological ~With an ever-increasing volume of scientific literature
systems on global scales ranging from genomes and pro-now available electronically, there is both a pressing need
teomes to metabalomes. Full exploration of these valuableand a great opportunity in developing more efficient ways
data requires advanced bioinformatics infrastructures for bi- of literature data mining. Indeed, in recent years, natu-
ological knowledge management. In particular, major cu- ral language processing (NLP) technologies are being uti-
rated databases, such as the UniProt protein knowledgebasbtzed for biological literature mining and information ex-
(Apweiler et al., 200and various genome databases, rep- traction Hirschman et al., 2002aAs a member of the
resent basic resources for biological interpretation of large- UniProt consortium, our group at the Protein Information
scale data. Of special value in these databases are annotatiorResource (PIR)Wu et al., 2003pis primarily interested in
derived from experimentally verified published data that rep- the “database curation” application—namely, extracting ex-
resent the latest scientific knowledge about specific genesperimental information from the scientific literature and pop-
and proteins. However, the amount of such literature-basedulating the data in appropriate annotation fields of the UniProt
database.

* Corresponding author. Tel.: +1 202 687 1039; fax: +1 202 687 1662. _The process of apply_ing literature mining .methOdS forpro-
E-mail addresswuc@georgetown.edu (C.H. \/Vu). tein database curation involves several taskg.(1):
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Fig. 1. Bibliography mapping and annotation extraction for literature-based database curation.

e bibliography mapping: identification of articles from lit- Inspired by the promise of text mining methodologies for
erature sources (such as PubMed) that describe a giverdatabase curation, but at the same time, the lack of adequate
protein entry; curated data for training and benchmarking, PIR has devel-

e annotation extraction: categorization of annotation types oped a resource for protein literature mining—iProLINK (in-
and extraction of sentences and/or phrases describing tha@egrated Protein Literature, INformation and Knowledge).
given annotation; and This paper describes the various data sources in iProLINK

e database curation: conversion of the extracted litera- and their application to literature mining research.
ture information into annotation in the database with
structured syntax, controlled vocabulary, and evidence

attribution. 2. iProLINK overview

These tasks are also related to tlhe topics IOf proteinnamed  1pe gata sources in iProLINK are organized into two ma-
entity recognition and protein ontology development. Apre- i, .ataqories based on their utilization for text mining/NLP

requisite to bibliography mapping is protein named entity osearchrig. 2), as summarized below and detailed in Sec-
recognition—identification of protein names from articles. tions3 and 4

Furthermore, due to the long-standing problem of protein

nomenclature, a protein ontology can assist entity recogni-

tion with the description of names and synonyms of protein 2.1. Literature-based protein curation
classes as well as their relationships.

Future progress in biological literature mining and an- NLP research for literature-based protein curation in-
notation extraction requires close collaboration of computa- volves bibliography mapping (to map literature to protein
tional and biological scientists. Benchmarking data and re- database entries) and annotation extraction (to extract anno-
sources need to be developed for training and evaluating lit- tation information from the literature). The corresponding
erature mining methodologies, while biological domain ex- data sources include:
perts need to provide scientific validation and explanation
for literature mining results. To evaluate the utility of text e bibliography system: bibliography information pages for

mining techniques for mining biological data from litera-  all protein entries with protein to PubMed ID (PMID)
ture, there have been community evaluation contests such Mapping, as well as a bibliography submission page for
as Knowledge Discovery and Data Mining cup (KDDYeh researchers to map and submit papers; and

etal., 2003 and more recenﬂy Critical Assessment of Infor- literature corpus: abstracts and full-text articles manua”y
mation Extraction systems in Biology (BioCreAtlvéjt(p:/ tagged with experimentally validated protein features

www.pdg.cnb.uam.es/BioLINK/BioCreative.eval.hjml such as post-translation modifications.
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Fig. 2. iProLINK as a resource for text mining research to facilitate protein database curation.

2.2. Protein named entity recognition and ontology 3. iProLINK resource for bibliography mapping and
development annotation extraction

To facilitate NLP approaches to named entity recognition ~ The inclusion of experimentally validated annotation with
and ontology development, iProLINK includes: literature citation for evidence attribution can greatly enhance
the quality and value of protein databases. As the volume
e protein dictionaries: a protein name dictionary consisting of sequence data and scientific literature continues to grow
of terms for names, synonyms and acronyms, and word to-exponentially, the manual processes by which the evidence
ken dictionaries consisting of biomedical terms, chemical attribution has been done in the past become a bottleneck in
terms, macromolecules, common English, and non-word protein database curation. It is essential to develop computa-

tokens; tional approaches for the mapping and extraction of protein
e protein ontology: an ontology based on PIRSW(et al., experimental data. Indeed, curated databases and their asso-
20043 protein family names; ciated PubMed abstracts have been used to create annotated

o protein and family naming guidelines: documents outlin- corpora for training classifiers to extract protein localization

ing rules and conventions for assigning protein names andinformation Craven and Kumlien, 1999

protein family names;
e protein tagging guidelines and Literature Corpus: guide- 3.1. PIR bibliography system

lines for tagging protein names in abstracts, and abstracts

manually tagged with protein names. Linking protein entries to relevant scientific literature that

describes or characterizes the proteins is crucial for increas-

The resource is freely accessible from the PIR web site |ng the amount of experimenta”y verified data and for im-
at http://pir.georgetown.edu/iprolinkvith a listing and hy-  proving the quality of protein annotation. To provide a more
pertext links for all downloadable files. The site also pro- comprehensive bibliographic coverage for all UniProt protein
vides search mechanisms for accessing the PIR bibliographyentries, PIR has developed a bibliography information sys-
system. Protein feature-based searches provide access to pgem. The bibliography system includes a biweekly-updated
pers with tagged experimental feature evidence. Also linked pibliography database, as well as a web interface for brows-
are PIR collaborators who are CondUCting related text min- |ng and Searching b|b||ography information pages and for
ing/NLP research projects using the iProLINK resource.  submitting bibliographic data for UniProt proteins.
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Th_e bibliography |nf0rrr_1at|_on page prowdes, for e_ach ENTRY  S27214 #type complete o~

protein entry, reference citations compiled from multiple |TITLE  annexin V — bovine
sources, including several curated databases. In additior| FEATURE
to the underlying UniProt database (with references com-| 1 #fmodified_site acetylated amino end (Ala) fistatus

; ; RN experimental\ [PMID:1420335]
bined from Swiss-Prot, TrEMBL, and PIR-PSD), biblio- Y -

. 22 #binding_site phosphate (Thr) (covalent) #status

graphic data are also collected from databases such as SGI experimental\ [PMID:1420335]
(Christie etal., 2004 MGD (Blake et al., 200Band GeneRIF 27,29.31,71 #binding_site calcium, high affinity (Met, Gly,
(Mitchell et al., 2003. Many reference citations are curated, Gly, Glu) #status predicted\
providing categorization of protein annotation information =TT
contained in the citation. The bibliography submission inter- FT - binding site | phosphate (Thr) (covalent) | 22 (all (B)

face guides users through steps in mapping reference cita [TI - Novel isoforms of CaBP 33/37 (annexin V) from mammalian brain: structural
tions to protein entries, entering the bibliographic data, and ;ﬂﬁpl%°sph°af1¥!ﬂ“°f; d'ffefzﬂﬂesltlhat ﬁ%ﬁ;ﬁ dlsiﬂct b1°bl°81°aif°;1 .
0 R ; i ~e - I'wo calcm-dependent phospholipid- and membrane-binding protems have
;ummanzmg the ante.nts using categories (SUCh as gen.etlc‘ been purified from bovine bram. These are termed CaBP33 and CaBP37.
t|ssu§/cellular Ioc;ahzanon, _moIecuIar .compllex Orinteraction, |compete sequence analysis hes sevealed that these two proteins are
function, regulation, and disease), with evidence attribution |iscforms of annexin V. Despite an apparent difference of 4 kDa between the

(experimental or predicted) and description of methods. two proteins on SDS-PAGE, only two amino-acid substitutions were found.
These are, in CaBP33, Ser-36 and Lys-125 and in CaBP37, Thr-36 and

. . . L . Glu-125. This corresponds to a mass difference of 15 Da. This was

3.2. PI_R feature eyldence attribution—citation mapping confirmed by electrospray mass spectrometric analysis. Both isoforms can
and evidence tagging be phosphorylated substoichiometrically in vitro by protein kinase C at
residue Thr-22

In the PIR-PSD database, feature annotations such as>" - Biochm Biophys ficta 1992 Nov 10.1160(1):76-83

- . S - . PMID- 1420335

binding sites, catalytic sites, and modified sites, are labeled|g; ... ~.ooa1 e ste of phosphorylasion was found to be Th-22

with status tagséxperimentalor “ predicted to distinguish by vh

experimentally verified from computationally predicted

data. However, suchekperimentdltags were not originally PMID: 1420335 | PIR: 527214 (€)

attributed with literature citations for the experimental AN - 3: protein_kinase_C | CaBP33 and CaBP37 (Both isoforms) | residue Thr-22
evidence, even thOUgh the relevant citations are usually TI - Novel isoforms of CaBP 33/37 (annexin V) from mammalian brain: structural
present in the Reference section of the PSD sequence repor |nd phosphoration differences that suggest distinct biological roles.
. . oy . AB - Two calcium-dependent phospholipid- and membrane-binding proteins have
To apPTOP“ateW attribute b|b||09raph|c data to features been purified from bovine bram. These are termed CaBP33 and CaBP37.
with experimenta| evidence, we have been Conducting Co;pplete sequence e}\nagsis ]_ms revealed ﬂuzlt_t‘ilese two Fjoll\e[i).usbnre 1
. . isoforms of annexin V. Despite an apparent difference of 4 kDa between the
a !’etrospectlye literature SUrV.eW(J et al, 2003)) The . |These are, in CaBP33, Ser-36 and Lys-125 and in CaBP37, Thr-36 and
evidence-attributed PSD experimental feature data are being|Gin-125. This corresponds to a mass difference of 15 Da. This was
p (
in corporated into the UniProt kn owledgebase confirmed by electrospray mass spectrometric analysis. Both isoforms can
. . > ’ . be phosphorvlated substoichiometrically in vitro by protein kinase C at
The retrospective literature survey involves both citation |;esigue Thr22.
mapping (finding citations from the Reference section that |S© - Biochim Biophys Acta 1992 Nov 10;1160(1):76-83.
describe the given experimental feature) and evidence tag-
ging (tagging the sentences prOVidiﬂg eXPerimenta| evidencerig. 3. Evidence attribution and computational extraction of experimental
in an abstract and/or full-text articlefig. 3 shows an features in PIR-PSD. (A) Citation-attributed feature with PMID mapping;
example of evidence attribution for the feature “bindsitg: (B) annotation-tagged text based on manual curation; (C) annotation-tagged
phosphate (Thr) (covalent)” at amino acid residue 22. The t€xtbased on computational extraction.
attribution includes a direct PMID citation on the feature line ] ) )
(Fig. 3A) and an annotation-tagged text where a sentence isfeature constitute the “negative” data set. For automatic an-
from the full-text paper Kig. 3B). There are a total of used as training corpora for various types of protein sequence
5296 PSD protein sequence entries with 9788 experimentalfeatures’ which are categorized and described based on a con-
feature lines to be mapped. Currently, over 3700 feature trolled vocabulary.
lines have been manually attributed with literature citation,
half of which also have evidence tagging in abstracts 3.3. Training corpus for protein post-translational
and/or full-text articles. The status of citation mapping and modifications (PTMs)
evidence tagging for different feature types can be viewed at
http://pir.georgetown.edu/cgi-bin/ipkLitFt.pl?stat=1 From the 9788 experimental feature lines, a total of
The mapped citations and annotation-tagged texts not only2037 lines correspond to five post-translational modification
provide users with quality annotation, but can also serve asfeatures—phosphorylation, acetylation, glycosylation,
NLP training data. For automatic citation mapping tasks, the methylation, and hydroxylation. The status of citation
mapped citations constitute the “positive” data set while other mapping and evidence tagging of the five PTMs is
citations in the Reference section that do not map to the givenshown in Table 1 (http://pir.georgetown.edu/cgi-bin/
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Table 1 _ _ _ _ ~of bibliographic information to protein databases. The
Citation mapping and evidence tagging of experimental PTM features in challenge primarily stems from the long-standing problem
PIR-PSD - u ; T
S — _ of protein nomenclature, where “profligate and undisciplined
PTM types I# Feature #Cltatl(c;n- # Evidence-tagged labeling is hampering communicationNéture, 199Y. A
ines mappe AB  FL NA protein name is a label given to a protein object in the
Acetylation 664 636 (95%) 79 107 401 scientific literature and in biological databases. Scientists
Glycosylation 626 322 (54%) 121 74 136 may name a newly discovered or characterized protein
y y p
M:thylstior: 238 198 (?ﬁ%g 38 36 107 based on its function, sequence features, gene name, cellular
Phosphorylation 303 255 (8®6) 159 58 43 I ; : ;
ocation, molecular weight, or other properties, as well as
Hydroxylation 206 94 (4%%) 41 32 35 9 prop

their combinations or abbreviations. Often the same protein
is named differently in different databases or publications,
and occasionally different proteins may share the same
name. Protein name standardization requires community
ipkLitFt.pl?stat=2. The on-line table provides hypertext effort—only a small fraction of all proteins has standard
links for each PTM type to several underlying datasets, nomenclature, most notably, the IUBMB Enzyme Nomen-
including the complete listing of all PSD entries with clature bttp://iwww.chem.gmul.ac.uk/iubmb/enzyme
mapped citations (PMIDs) as well as the complete collection  There has been a small body of text mining work di-
of evidence-tagged texts. rectly addressing the protein name probldfokuda et al.,
The PTM data sets can be exploited as NLP training and 1998; Yoshida et al., 2000; Zhou et al., 2004; Mika and
benchmarking data for identifying each of the five individual Rost, 2003 The applications generally use three com-
PTM types or, potentially, for the recognition and extraction mon approaches—dictionary-based, rule-based, and machine
of generic PTMs. The data are now being used for PTM anno- learning—and/or their combinations. The performance (pre-
tation extraction by our collaborating computational groups. cision and recall) of text mining techniques in biological
One example is the automatic extraction of protein phospho- name recognition remain relatively low (75-80%) compared
rylationinformation, including agent (kinases), substrate, and to other domains. Multiple factors may be involved, includ-
sites, from the abstracFig. 3C) using a rule-based system. ing absence of shared training and test sets for rigorous mea-
Another example is the use of abstracts tagged for the fivesures of progress, lack of annotated training data specific
PTMs to train automatic classifiers to classify papers report- to biological tasks, pervasive ambiguity of terms, frequent
ing PTMs based on support vector machine and Bayesianintroduction of new terms, and a mismatch between eval-
naive statistical approaches. These studies allow “computer-uation tasks as defined for news report and for biological
assisted” retrospective literature survey and will facilitate problems Hirschman et al., 2003biProLINK consists of

literature-based feature annotation for protein databases. several data sources that can be used for protein named entity
Furthermore, such literature mining studies can benefit recognition.

proteomic research because detecting protein PTMs (espe-

cially phosphorylation) is one of the major challenges in 4.1. Protein name dictionary and word token

large-scale proteomic analyses. PTMs found in proteomesdictionaries

vary with cell and tissue types, and change in temporal man-

ners. Literature mining techniques can assist the creation  Qur protein name dictionary is derived from the protein

of a knowledgebase composed of experimental evidence forname field in the iProClass databasu( et al., 2004h

known PTMs that are mapped to protein entries. The knowl- which consists of protein names from UniProt (Swiss-Prot,

edgebase can then serve as a useful reference for the identiffrEMBL, PIR-PSD) and RefSedP¢uitt and Maglott, 20011

cation and characterization of peptides from high-throughput After the initial compilation, the dictionary undergoes

proteomic data such as those from peptide mass fingerprintsseveral filtering processes to generate unique protein names
(including synonyms and acronyms), and to remove nonsen-
sical names and certain non-name annotations. For example,

4. iProLINK resource for protein named entity entry names such aster-alphatrypsin inhibitor (GIK-14)

recognition and ontology development (Fragmen}” were broken intdnter-alphatrypsin inhibitor,
GIK-14 andFragment The naméd-ragmentis later removed

Protein named entity recognition (finding protein names from the dictionary along with a list of other “bad” names

from literature texts) is a prerequisite for bibliography such asypothetical proteinconserved hypothetical protein

mapping (identifying papers describing specified proteins). unnamed protein producpredicted protein and predicted

It is also fundamental for several other biological literature protein of unknown functiamn addition, words such gsob-

mining tasks, including the extraction of protein annotations able, putative andsimilar to before protein names are also

(such as protein—protein interactions) from literature. Protein removed so that a name likitative aspartate aminotrans-

named entity recognition, however, is still an open problem ferase Ais merged t@aspartate aminotransferasetéreduce

and constitutes a bottleneck for computational mapping the redundancy. Derived from over 1.5 million iProClass

PTM, post-translational modification; AB, abstract; FL, full-text article; NA,
not tagged. (Data cited as of September 2004.)
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entries, the protein name dictionary currently has about guidelines. They were developed to test inter-annotator
700,000 names, each of which is shown with its frequency reliability and can be used as a gold standard for different
count. machine-based protein name taggers or classifiers. Although

Most protein names are composed of combinations of two several name-tagged gold standards already exist, the
or more words (or tokens). Therefore, protein name rules canimportance of inter-annotator reliability for machine-based
be derived from tokenized protein words and used during taggers has been seldom addressed. In reality, due to the
post-tagging processing to improve machine learning-basedcomplex nature of protein naming, inter-annotator agreement
named entity recognition. We have compiled specialized varies. One can consider the inter-annotator performance
single-word dictionaries by tokenization and classification as the upper-bound of the machine performance. To test
of protein names from 30,000 well-curated iProClass protein inter-annotator reliability, each literature corpus of 300 ab-
entries (each containing at least five reference citations). Thestracts was independently tagged by three individuals based
dictionaries consist of individual word tokens categorized on a common tagging guideline. Two protein name tagging
into five classes: guidelines (Versions 1.0 and 2.0) were developed and their
effect on inter-annotator performance was compakhéan{
et al., 2004. The major differences between the two tagging
guidelines are summarized Table 2

Guideline 1.0 defines how to tag protein objects, not pro-
tein named entities. This leads to inconsistent tagging by dif-
ferent annotators when protein names refer to non-protein
objects. Especially common inconsistency occurs when pro-
tein names are used in the context of gene-related objects
(such as gene, promoter, and mRNA). For exanghejore-
ceptor G-protein alpha-subunit gene GNAEZers to a gene
object, butphotoreceptor G-protein alpha-subumit a pro-
tein name that was tagged by one annotator, but not the other

or glycoproteins. . .
« Common Englishde): common English words are usedto two. As a result, the human tagging only achieved a 0.716
F-measure among three annotators.

describe various aspects or properties of proteins, such as Guideline 2.0 defines tagging rules for protein named en-

short signal interacting andrepair. These also include tities regardless of the context of the object. An exclusion
spelled-out form of Greek letters, suchaphaandbeta L : . .
i list is given for generic terms such asotein subunit ac-
as well as stop words likef, at, andto. . ; :
) L tivator, andcarrier. Thus, in the above examplphotore-
e Non-word tokens: they are combinations of letters, num- . L
ceptor Gprotein alphasubunitwill be tagged regardless of
bers, or symbols. They often are acronyms, synonyms, or o . -
L : o what follows it. With the revised guideline, the second man-
abbreviations, such &NAfor deoxyribonucleic acidAla . o : .
! ually tagged data sets achieved a significantly higher inter-
for alaning and GH for growth hormone The form of .
. . annotator--measure of 0.868. Notably, an automatic name
non-word tokens can be number only, single letter, multi- . 2
o tagger based on our protein name dictionary alone tagged the
ple letters, or combinations of numbers, letters, and other : .
) : same literature corpus with a performance of F4heasure
symbols. Non-word tokens may stand for biochemical en- o
. . . . : . based on the human-tagged corpus. Considering that many
tities such as nucleic acids, nucleotides, and amino acids. . .. i
dictionary-based name tags overlap with the correct target
Protein name rules can be expressed based on the five toentities as judged by humans, the machine tagging actually
ken classes. Some examples include: (i) a protein name whichfound 68% of the protein named entities in the 300 abstracts.
is notan acronym or abbreviations should have atleastmne  Therefore, dictionary-based pre-tagging can facilitate the hu-
word, as innatural killer cellactivating factor parathyroid man tagging process by easing human reading and reducing
hormone recepta?, andglutathione transferas; (ii) btand human fatigue. In one example, the dictionary tagged multi-
ct words alone cannot make protein names unless combinedple instances oémerinin an abstract, one or more of which
with an mc word, as intranscription factor || potassium was missed by each of the three annotators.

e Biomedical termsIft): these terms are used in a broad
range of biological and medical sciences. They mainly
describe structures of all forms of life at different levels
(from gross morphology to molecular structure), as well
as their respective functions and mechanisms in both nor-
mal (physiological) and diseased (pathological) states.

e Chemical termsdt): these are words that describe organic
orinorganic chemical materials, chemical groups or bonds,
or chemical properties.

e MacromoleculesriQ: these words refer to biopolymers
such as proteins, peptides, DNA, RNA, polysaccharides,

channe] andnucleoside diphosphate phosphatased (iii) The confusion between protein objects and protein named
numerals alone cannot be a protein name unless combinecentities is also observed in the entity extraction task of the
with other symbols, as ip53 p38 andhsp70 BioCreAtlve contest. The goal of this task was to assess

the ability of an automated system to identify genes (or pro-
4.2. Protein name tagging guidelines and name-tagged teins, where there is ambiguity) mentioned in text. It specif-
corpora ically required the identification of terms in biomedical arti-
cles that are gene or protein names. However, the distinction
Other iProLINK data resources for named entity recog- between a named entity and a gene/protein object was not
nition are two sets of literature corpora that were manually explicit in the contest guideline. This ambiguity may have
tagged with protein names based on two versions of taggingaffected the performance of some tagging programs. Indeed,
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Table 2
Comparisons of two versions of protein name tagging guidelines
Tagging guideline 1.0 Tagging guideline 2.0
Tagging target Protein object Protein named entity
Tag types <protein>, <acronym> and <array-protein> <protein> and <long-form>
Use of dictionary No dictionary Pre-tagging with protein name dictionary
Prior knowledge Major requirement Minor requirement
Inter-annotator performance F-measure: 0.716 F-measure: 0.868

several “false positives” tagged by one contested programto systematically examine the relationships between the three
(Liu et al., 2004 may have been legitimate “mentioning of GO sub-ontologies (molecular function, biological process
genes/proteins.” Some examples superoxide dismutase and cellular component) based on the shared annotations at
“... may be involved in copper homeostasis and modula- different protein family levels. (2) The PIRSF associations to
tion of copper/zincsuperoxide dismutasg€u/ZnSOD) ac- GO nodes can lead to interesting examinations as to whether
tivity in neurons” (PMID: 10550328)T CR-deltain “. .. and certain GO subtrees might need expansion if GO concepts
TCRdeltamRNA from lymph node” (PMID:10929051),and  are too broad. (3) The comprehensive classification of related
Rad51in “. .. arresting growth with S-phase DNA content, protein families in PIRSF can also suggest identification of
and generate nucleRad51foci, followed by cell death..” missing GO nodes when entire groups of superfamilies or
(PMID: 11980714). families cannot be mapped to existing GO terms.

4.3. PIRSF family classification-based protein ontology
5. Conclusion

Biological ontologies are crucial for biological knowledge
management, including mining literature data to extract rel-  We have developed iProLINK as a resource to facilitate
evant information and integrating information from multiple text mining/NLP research in the areas of literature-based
databases. A protein ontology—consisting of names and syn-database curation, named entity recognition, and ontology
onyms of protein classes as well as their re|ati0nships_candeV8|0pment. The collection of data sources can be utilized
be used to assist with protein named entity recognition. Fur- by computational or biological researchers to explore litera-
thermore, an 0nto|ogy based on protein fam"y re|ationshipsy ture information on proteins and their features or properties.
such as the PIRSF classification system, can be mapped to andherefore, iProLINK serves as a knowledge link bridging
Comp|ement the gene Onto|ogy (Gmburner et a|_, 2000 protein databases and scientific literature.

The PIRSF (SuperFamily) classification system orga-
nizes proteins into a network structure from superfamilies to
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